McCabe, Micheal H.
CS 130 Introduction to Programming
1/28/2009
Stan Schuyler, D.Sc.
Assignment #4A (Revised)
Due: 1/28/09

Assignment #4A (revised)

You are to compose an algorithm for step “2.A.” below, that will take any whole (integer) number in base 10, up to 2 million or so, as input, and produce a whole (integer) number in base N as output.

After writing the algorithm (“Convert <number 10> to <number 12>”), debug it using the numbers: 0, 6, 12, 18, 24, 28, 39 and 9999.

If your answers are not: 0000, 0006, 0010, 0016, 0020, 0024, 0033, 5953, you have a bug. Fix it!

Finally, ask a peer (friend, enemy, or colleague) to test it using the number 165.

Publish your “final” algorithm as a sequence of steps below.

Algorithm: Convert <number10> to <numbern>

Assumption: An input is received that is determined to be a valid base 10 number referred to in the algorithm below as <Number (10)>. An additional input is given to specify the BASE of the output. You are to compose the steps that will literally allow a person who only knows arithmetic to calculate the <Number (n)>. You may use any reference to help you, but you must credit the reference (author, title of document, location, copyright date or current date).

Step:

1. Let’s define our variables and a constant that represents the series of characters (glyphs) that we use to represents digits in base N.

a. Base10_value is an integer variable that holds the data we accept from the user.

b. Dividend is an integer variable we will use repeatedly in our algorithm to represent the number being divided.

c. Divisor is an integer variable we will use repeatedly to divide the input value into an equivalent number in base N. This variable holds the desired BASE.

d. Quotient is an integer variable we will use to store to result of each division step in the process.

e. Remainder is an integer variable we will use to store the remainder in each step.

f. Symbols is a constant string we will use to store the series of characters, or glyphs, that we will use to represent the digits in base 12. We define that here as follows: Symbols=”0123456789ABCDEF”

g. OutputString is a string variable that will be used to build the string of characters representing the base-12 number.

2. Initialize our variables to zero (or the null string in the case of output string.)

3. Accept the Base-10 number from the user and store it in the variable Base10_value.

4. Accept input from the operator that specifies the desired base. Store this value in Divisor.

5. Copy (move) the value in Base10_Value to Dividend. This allows us to manipulate the value while retaining a copy of the input data.

6. If the user entered 0 (zero) as his input value, we have a special case – the output will also be zero and we can skip the while loop. Since the while loop uses the value of 0 in divisor to exit, it won't work anyway. Put the symbol 0 into OutputString, deliver it to the user, and exit the program.

7. We’re going to execute the following process as many times as it takes to get a dividend value of zero, at which point we will exit the program. This is our WHILE loop. (While DIVIDEND not 0...)

8. Divide the value stored in Dividend by Divisor. Take the remainder from this division step and store in Remainder.

9. Again, divide the value stored in Dividend by Divisor. This time, take the quotient from this division step and store it in Quotient.

10. Now, to find the correct character used to represent this value in base-12, use the constant Symbols and take the single letter that is Remainder from the left. Append this letter to the left side of the string variable OutputString.

11. Now, take the Quotient from this step and store it back in Dividend.

12. Repeat steps 7-11 until Dividend reaches zero and we’ve done all digits.

13. The variable OutputString now contains the base-12 number equivalent to the base-10 number entered by the user.

14. Deliver OutputString to the user.

15. End

C++ Program Source Code to Implement this Algorithm:

//McCabe, Micheal H.

//CSCI-130 Section 002 Introduction to Problem Solving and Programming Using C++

//Professor Schuyler

//January 28, 2009

//

//Assignment #4A (Revised)

//Due January 28, 2009

//

//This program was originally submitted as Assignment #4A on January 22, 2009.

//

//The following changes were implemented at the request of Prof. Schuyler:

//

// 1.) The user can now specify the base for output data (base 2 to base 16)

// 2.) The range of acceptable input values (base 10) is now 0 - 2^31

// 3.) Control logic has been repaired to exit more gracefully

//

//The method in question was derived from examples presented in class. The

//only reference utilized was the textbook: Programming and Problem Solving

//with C++, 4th Edition, by Nell Dale & Chip Weems, Copyright 2005 by Jones

//and Bartlett Publishers, Sudbury, MA, USA. ISBN 13:978-0-7637-0798-9

//

//Actual Program Text Begins Here...

//

//Standard Declarations to get the C++ Preprocessor to actually pass the source

//code to the compiler...

#include <iostream>

using namespace std;

//Now, define the entry point for Main and get on with it...

int main()

{

//Declare the constants and variables for this program

 const string symbols="0123456789ABCDEF";

 long base10_value=0;

 long dividend=0;

 long divisor=10; //added divisor as a variable to replace "12" as the base.

 long quotient=0;

 long remainder=0;

 string outputstring = "";

//Print an introductory message and and tell the user how to escape

 cout << "This program converts a base-10 number in the range 0 to 2^31 to" << endl;

 cout << "the equivalent value in a base specified by the user (2-16)" << endl;

 cout << endl;

 cout << "To end the program, enter a negative value or a nonsense base (b<2 or b>16)";

 cout << endl;

//Prompt the user for values and perform a sanity check. If any of the input

//values, the program terminates with an error condition.

 cout << "Please enter a decimal value in the range 0 - 2^31: ";

 cin >> base10_value;

 cout << "Thank you. Please enter the desired base for output: ";

 cin >> divisor;

 if (base10_value<0) {cout << "Value less than zero!" << endl; return 1;}

 if (base10_value>2147483647) {cout << "Value greater than 2^31." << endl; return 1;}

 if (divisor<2) {cout << "Base too low!" << endl; return 1;}

 if (divisor>16) {cout << "Base too high!" << endl; return 1;}

//Actual processing begins here.

//Move the input value into dividend. This allows us to save the input data.

 dividend=base10_value;

//For a special case -- if the input value is less than one, we never make it to

//the loop where we create the output string. The value of zero in any

//valid (for this program) base is zero, so we will set the output string

//to zero in the special case.

if (base10_value<1)

 { outputstring="0";}

else

 {

//Here's the main loop.

 while (dividend>0)

{

//We find the modulus of the dividend divided by the base and store this in remainder.

//The remainder here will represent the base-n digit in the place-value system.

remainder=dividend%divisor;

//We also find the integer quotient, since that now becomes the dividend for the

//next place in the number.

quotient=dividend/divisor;

//This was also tricky for a BASIC programmer. Using the remainder as our

//pointer, we find the correct glyph stored in the constant symbols and

//concatenate this to the left side of the output string. As we procede from

//the high-order digits to the low-order digits, the output string is built

//left to right (little endian.)

outputstring=symbols.substr(remainder,1)+outputstring;

//After adding the current digit to the output string, we replace the dividend

//with the quotient from the last cycle and repeat until done.

dividend=quotient;

}

 }

//When we've completed the whileloop, control passes to this statement and we

//send the output string to standard output.

 cout << "The answer is: "<< outputstring << endl;

//In this case, the next statement ends my program and returns control to the

//program that called it (presumably, the operating system.) The zero indicates

//that the program concluded normally.

 return 0;

 }

//Finally, the last curly brace in the file indicates the end of routine MAIN,

//and (in this case), the end of my program text.

PROGRAM COMPILATION AND TEST RUN SCRIPT:

harve@Presario:~/Documents/cs130$ make assignment4

g++ assignment4.cpp -o assignment4

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 0

Thank you. Please enter the desired base for output: 12

The answer is: 0

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 6

Thank you. Please enter the desired base for output: 12

The answer is: 6

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 12

Thank you. Please enter the desired base for output: 12

The answer is: 10

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 18

Thank you. Please enter the desired base for output: 12

The answer is: 16

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 24

Thank you. Please enter the desired base for output: 12

The answer is: 20

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 28

Thank you. Please enter the desired base for output: 12

The answer is: 24

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 39

Thank you. Please enter the desired base for output: 12

The answer is: 33

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 9999

Thank you. Please enter the desired base for output: 12

The answer is: 5953

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 165

Thank you. Please enter the desired base for output: 12

The answer is: 119

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 10000

Thank you. Please enter the desired base for output: 12

The answer is: 5954

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 167

Thank you. Please enter the desired base for output: 12

The answer is: 11B

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 1024

Thank you. Please enter the desired base for output: 16

The answer is: 400

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 1285632

Thank you. Please enter the desired base for output: 2

The answer is: 100111001111000000000

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: -67

Thank you. Please enter the desired base for output: 2

Value less than zero!

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 12

Thank you. Please enter the desired base for output: 1

Base too low!

harve@Presario:~/Documents/cs130$./assignment4

This program converts a base-10 number in the range 0 to 2^31 to

the equivalent value in a base specified by the user (2-16)

To end the program, enter a negative value or a nonsense base (b<2 or b>16)

Please enter a decimal value in the range 0 - 2^31: 38

Thank you. Please enter the desired base for output: 17

Base too high!

harve@Presario:~/Documents/cs130$

<base 10 number>

<base 12 number>

Application: Base Converter

Assume: input is always in base 10;

Step:

Input a valid base 10 <number 10>;

If (<number10> is less than 10000), then

 2.A. Do: Convert <number 10> to <number 12>;

 2.B. Print: “Base 12 is: ” <number 12>;

 Otherwise,

 2.C Print: “Input Error”;

3. Exit;

McCabeM_Assignment4A_Revised.doc
8

