McCabe, Micheal H.
CS 130 Introduction to Programming
1/23/2009
Stan Schuyler, D.Sc.
Assignment #4A
Due: Class 4

Assignment #4A
You are to compose an algorithm for step “2.A.” below, that will take any whole (integer) number in base 10, limited to 4 digits, as input, and produce a whole (integer) number in base 12 as output.
After writing the algorithm (“Convert <number 10> to <number 12>”), debug it using the numbers: 0, 6, 12, 18, 24, 28, 39 and 9999.
If your answers are not: 0000, 0006, 0010, 0016, 0020, 0024, 0033, 5953, you have a bug. Fix it!

Finally, ask a peer (friend, enemy, or colleague) to test it using the number 165.

Publish your “final” algorithm as a sequence of steps below.

Algorithm: Convert <number10> to <number12>
Assumption: An input is received that is determined to be a valid base 10 number referred to in the algorithm below as <Number (10)>. You are to compose the steps that will literally allow a person who only knows arithmetic to calculate the <Number (12)>. You may use any reference to help you, but you must credit the reference (author, title of document, location, copyright date or current date).
Step:

1. Let’s define our variables and a constant that represents the series of characters (glyphs) that we use to represents digits in base 12.
1. Base10_value is an integer variable that holds the data we accept from the user.

1. Place is an integer variable we use to track progress through a loop.

1. Dividend is an integer variable we will use repeatedly in our algorithm to represent the number being divided.

1. Quotient is an integer variable we will use to store to result of each division step in the process.

1. Remainder is an integer variable we will use to store the remainder in each step.

1. Symbols is a constant string we will use to store the series of characters, or glyphs, that we will use to represent the digits in base 12. We define that here as follows: Symbols=”0123456789AB”\
1. OutputString is a string variable that will be used to build the string of characters representing the base-12 number.

2. Initialize our variables to zero (or the null string in the case of output string.)
3. Accept the Base-10 number from the user and store it in the variable Base10_value.
4. Copy (move) the value in Base10_Value to Dividend. This allows us to manipulate the value while retaining a copy of the input data.
5. We’re going to execute the following process four times, and we will track our progress using the variable Place. We will count down from 3 to zero, because the place value of each digit is equal to 12Place. We won’t use this right now, but it might prove useful if we modify the algorithm later (to convert to a different base, perhaps).
6. Divide the value stored in Dividend by 12. Take the remainder from this division step and store in Remainder.
7. Again, divide the value stored in Dividend by 12. This time, take the quotient from this division step and store it in Quotient.
8. Now, to find the correct character used to represent this value in base-12, use the constant Symbols and take the single letter that is Remainder from the left. Append this letter to the left side of the string variable OutputString.
9. Repeat steps 6-8 until Place reaches zero and we’ve done all four digits.
10. The variable OutputString now contains the base-12 number equivalent to the base-10 number entered by the user.
11. End
//McCabe, Micheal H.

//CSCI-130 Section 002 Introduction to Problem Solving and Programming Using C++

//Professor Schuyler

//January 22, 2009

//

//Assignment #4A

//Due January 26, 2009

//

//This program demonstrates an algorithm to convert a whole number in decimal,

//ranging from 0 to 9999, into a base-12 whole number.

//

//The method in question was derived from examples presented in class. The

//only reference utilized was the textbook: Programming and Problem Solving

//with C++, 4th Edition, by Nell Dale & Chip Weems, Copyright 2005 by Jones

//and Bartlett Publishers, Sudbury, MA, USA. ISBN 13:978-0-7637-0798-9

//

//Actual Program Text Begins Here...

//

//Standard Declarations to get the C++ Preprocessor to actually pass the source

//code to the compiler...

#include <iostream>

using namespace std;

//Now, define the entry point for Main and get on with it...

int main()

{

//Declare the constants and variables for this program

 const string symbols="0123456789AB";

 int base10_value=0;

 int place;

 int dividend;

 int quotient;

 int remainder;

 string outputstring = "";

//Print an introductory message and and tell the user how to escape

 cout << "This program converts a base-10 number in the range 0-9999 to" << endl;

 cout << "the equivalent value in base-12." << endl;

 cout << endl;

 cout << "To end the program, enter a decimal value greater than 9999.";

 cout << endl;

//Enter the main loop and prompt the user for a decimal value. Accept the value.

 while (base10_value < 10000)

 {cout << "Please enter a decimal value in the range 0-9999: ";

 cin >> base10_value;

 cout << endl;

//Actual processing begins here. We clear the output string by assigning the

//null value (this must be cleared here, else output from prior runs will be

//appended to the output of the current cycle.

 outputstring="";

//Move the input value into dividend. This allows us to save the input data.

 dividend=base10_value;

//This FOR loop is confusing for a BASIC programmer. Equivalent BASIC syntax

//would be FOR PLACE=3 TO 0 STEP -1.

 for (place=3; place>=0; place--)

//We find the modulus of the dividend divided by 12 and store this in remainder.

//The remainder here will represent the base-12 digit in the place-value system.

 {remainder=dividend%12;

//We also find the integer quotient, since that now becomes the dividend for the

//next place in the number.

 quotient=dividend/12;

//This was also tricky for a BASIC programmer. Using the remainder as our

//pointer, we find the correct glyph stored in the constant symbols and

//concatenate this to the left side of the output string. As we procede from

//the high-order digits to the low-order digits, the output string is built

//left to right (little endian.)

 outputstring=symbols.substr(remainder,1)+outputstring;

//After adding the current digit to the output string, we replace the dividend

//with the quotient from the last cycle and repeat until done. The right

//brace at the end of this statement serves as the 'NEXT' statement that would

//appear in the BASIC programming language.

 dividend=quotient;}

//When we've completed the FOR loop, control passes to this statement and we

//send the output string to standard output. The brace at the end of this

//statement concludes the WHILE loop that we started up above. When the

//user enters a value greater than 10000, the WHILE loop ends and control

//passes to the next statement down.

 cout << outputstring << endl;}

//In this case, the next statement ends my program and returns control to the

//program that called it (presumably, the operating system.) The zero indicates

//that the program concluded normally.

 return 0;

 }

//Finally, the last curly brace in the file indicates the end of routine MAIN,

//and (in this case), the end of my program text.

$./a.out

This program converts a base-10 number in the range 0-9999 to

the equivalent value in base-12.

To end the program, enter a decimal value greater than 9999.

Please enter a decimal value in the range 0-9999: 0

0000

Please enter a decimal value in the range 0-9999: 6

0006

Please enter a decimal value in the range 0-9999: 12

0010

Please enter a decimal value in the range 0-9999: 18

0016

Please enter a decimal value in the range 0-9999: 24

0020

Please enter a decimal value in the range 0-9999: 28

0024

Please enter a decimal value in the range 0-9999: 39

0033

Please enter a decimal value in the range 0-9999: 9999

5953

Please enter a decimal value in the range 0-9999: 165

0119

Please enter a decimal value in the range 0-9999: 10000

5954

$
<base 10 number>

<base 12 number>

Application: Base Converter

Assume: input is always in base 10;

Step:

Input a valid base 10 <number 10>;

If (<number10> is less than 10000), then

 2.A. Do: Convert <number 10> to <number 12>;

 2.B. Print: “Base 12 is: ” <number 12>;

 Otherwise,

 2.C Print: “Input Error”;

3. Exit;

McCabeM_Assignment4A.doc
- 5 -

