CSCI 130 C++
Class 14 – Due in Class 20
3/9/2009
Professor Schuyler
Learning Project
Calculator Project

A Simple Calculator “A’int So Simple”!
When you use a calculator, you assume a whole lot of things and concepts about how it operates. Look at the symbols on the keys of a simple, normal, everyday calculator!

+, -, *, /, Mem, Recall, and the Display is always showing the result.

As well, what happens when you press a key that does not make sense, or you enter numbers that are so big the calculator cannot produce a correct result?
You are to take the following specification and build a calculator that has the following user interface and behaviors.

Step 1: The Interface – output initial “Help Screen” (below)
The Simple Calculator

Enter Instruction:

e : Enter a pair of numbers N1 and N2

i : Enter data into a list of numbers (List), stop on ‘Q’
fi: File Input: prompt for a file name and read values into List[]

fo: File Output: prompt for a file name and write List values out.

+ : ADD (N1 + N2)

- - Subtract (N1 - N2)

* : Multiply (N1* N2)

/ : Divide (N1/N2)

^ : Raise any real N1 to the power of N2 for any integer N2 (+|-)

! : Calculate the factorial for any integer N1 (round if real)

c : Clear (N1, N2)
cL: Clear the memory List of all values

h : HELP

l : List all the values currently in List()

q : Quit

o : Output the last calculation result to the screen
a : Average of the values in List[]

d#: Delete the value at the index # in List[].

m#: Memorize (save) the last calculation Result at index # in List
s : Sum all the values in List[]
sd: Calculate the standard deviation of the List[]
p : Calculate the product of the values in the List[]
M1: Prompt for index “#” and Store N1 into List[#]

M2: Prompt for index “#” and Store N2 into List[#]

N1: Prompt for index “#” and Store List[#] into N1
N2: Prompt for index “#” and Store List[#] into N2
Step 2: Wait for a Command- Continuous User Request Loop - Until User Quits

Instruction:

_ (Calculator waits here
Sub-steps to Step 2:

For each character in the input

Decode the intended operation

If operation code is not recognized

Issue an error message and continue.

Otherwise, perform the operation

For each mathematical operation

Prohibit illogical operations (e.g. Divide by Zero, entering non-numeric values, etc.)
Validate the input and result is good

Output the result

Continue until user indicates quitting.

Steps as Directed by User (example for ‘e’ and ‘i’)
‘e’ – Enter a pair of values
Get a pair of Numbers (User input is highlighted)
Enter N1: 25
Substep: For input

Check that the input is valid and is a number.

If not valid, recover and re-attempt input

Enter N2: 5
Substep: For input

Check that the input is valid and is a number.
If not valid, recover and re-attempt input
‘i’ – Enter values and store in a List for later processing.
Get a set of Numbers from 1 to k (User input is highlighted), terminate on ‘Q’
Enter Value (1): 70.50
Substep: For input

Check that the input is valid and is a number.

If not valid, recover and re-attempt input

Enter Value (2): 140.25
Substep: For input

Check that the input is valid and is a number.
If not valid, recover and re-attempt input

Enter Value (3): -120.75
Enter Value (…): . . .
Enter Value (k): -49.00
Enter Value (k+1): Q
At this point k values are in the List[].
‘<others>’ – You are to complete the specification of behaviors
Calculator Behavioral requirements:
On Input:

1. Checks for values before attempting to calculate a result

2. Checks for Divide by zero before attempting division

3. Recovers from the user inputting a non-numeric values as an input
4. Supports the following operations: +, -, *, /, ^ (power), and ! (factorial)
5. Allows user to output the current values of all variables

6. Allows the result of an operation to be saved in a memory list with the ability to use an index number to reference it.
7. Allows the memory list values to replace either the first or second numeric variable.

8. Allows all variables to be cleared
Output:

1. Instruction prompts

2. Error Messages

3. Results of operations

4. Values of all variables
Your Assignment

1. First, read and understand what application this is going to be.

2. Develop questions to ensure your understand.

3. Do you want to redesign the user-application interface (UI)? If so, propose a revised specification.

4. Design the application:

a. First, design a series of usage scenarios. That means develop a test script that uses the commands to calculate various problems.

b. Design the outputs for each command

c. Design the structure of the code

i. Main routine

ii. Functions you will need

5. Using MS Word, compose a report that addresses assignment numbers 2, 3, and 4.
Program Design Requirements:

1 Position 0 in the data list is reserved to store how many user values are in the data list. When no “list” of values has been entered, it is zero.

2 N1 and N2 are to be stored in the data list at positions 1 and 2 (reserved positions).

3 The list of user values (exclusive of N1 and N2) are stored starting at position 3 in the data list; this means that when 1 value is entered and stored in element 3, element 0 is set to 1.

4 All calculations are to be done by functions that you call to return a result. For example, you will have an “add” function such that you can code “sum = add(j, k, datalist)”, a “sub(j, k, datalist),” and “multiply(j, k, datalist),” a “fact = factorial (j, datalist),” etc. Each function is designed to operate on “k” values starting at index j (except power (j, datalist) and factorial (j, datalist)). For example, add(1, 2, datalist) means add N1 and N2; add(3, 10, datalist) means add 10 values starting at index 3 (the user value list, of course datalist[0] better be equal or greater than 10 for the call to be legitimate). Factorial () and Power () operate by staring at index j; for factorial (), the value at j is rounded up to the nearest integer and the factorial is calculated; for power(), the value at index j is raised to the power of index (j+1), and the value at (j+1) is rounded down to the nearest integer (positive or negative).
5 The main command loop must be readable and easy to add and remove commands. A ‘c’ switch statement is required to achieve this.
6 Use preprocessor “#define <abbreviation> <replacement>” statements and/or “const <data type> <name> = <literal>;” to make the code more readable.
- 1 -

