McCabe, Micheal H.
CS 130 Introduction to Programming
3/11/2009
Professor Schuyler
Assignment #20
Due: 03/20/2009

Assignment #20

Instruction: Develop questions to ensure your understanding.

A Restating of the problem:

It appears that the program specifications call for a simple calculator application that will prompt the user for a command, use a “case” structure to dispatch a particular routine to fetch operands, and execute a particular function based on the command the user entered.

An intriguing feature of the specifications is the “List” of numbers that can be selectively stored and retrieved in a data file. Commands for manipulating this list include a “batch entry” function (i), file input (fi), file output (fo), clear list (cL), list (l), average (a), delete (d#), memorize (m#), sum (s), standard deviation (sd),product (p), and a varieties of move (M1, M2, N1, N2.)

A fair amount of error checking is required – including a check for “null” or insufficient input, a check to prevent division by zero, and a check for inappropriate non-numeric input.

The program must provide instruction prompts, error messages, the results of all operations, and the values of all the variables.

Questions & Comments on the Assignment:

Since the problem seems to be designed around a stack-type data structure, can we simplify the model a bit in order to generalize? The "old-tyme"HP calculators used a stack architecture and a “reverse-Polish Notation” scheme to implement the calculating engine...

To use this sort of machine, you would enter values (as needed) followed by the enter key. Functions would always take their operands from the “top” of the stack. (Instead of N1, N2)

For instance, to add two numbers, enter the first number followed by the enter key. The first number is “pushed” onto the stack and the stack pointer is incremented. The second number is entered and then the “+” key is pressed. This causes the calculator to add the first two numbers on the stack and push the answer onto the top of the stack.

Keystroke Example:

12 [ENTER]

<----- The calculator stores 12 on the stack

14 [+]

<----- The calculator stores 14 on the stack and

 dispatches the “add” routine. The add

 routine takes the two values from the

 “top” of the stack, adds them, and pushes

 the result onto the top of the stack.

26

<------ The display register shows the data

 element currently “on top” of the stack.

Problems with the RPN Scheme:

1. That's not exactly how the program specification was written.

2. Despite the simple elegance of the RPN scheme, even HP started making calculators with algebraic entry (infix notation as opposed to postfix.)

3. The user base is no doubt more accustomed to infix notation.

4. Register-to-register "moves" are somewhat unusual in a stack machine, but we could probably accommodate it.

Advantages of the RPN Scheme:

1. Data entry is simplified -- if you enter a number, the machine pushes the number onto the stack.

2. If you enter a non-numeric value, the program attempts to parse the line and dispatch the appropriate command subroutine. If you enter "garbage", it gives you a simple error message and returns to the prompt.

3. If we keep our internal system completely stack oriented, all functions simply grab their operands from the top of the stack. This simplifies parameter passing and often eliminates the need.

4. Since the result of each possible operation is pushed onto the stack, we can easily "chain" calculations together.

5. RPN eliminates the need to consider operator precedence, parenthesis, etc. Like the Morse telegraph, it forces the operator to use his own intelligence in place of complicated machinery (or code, in this case.)

6. We can easily add functions to the calculator, since parameter passing has been standardized.

7. Operators who are fond of the FORTH programming language, Sun open-firmware, HP calculators, and ancient Burroughs mainframe computers will feel right at home!

8. Even if we implement the calculator "engine" using a prefix or infix notation scheme, we can still use the "stack" approach to simplify data entry. In addition, if we are given a complex expression (or are otherwise forced to deal with operator precedence), the function that evaluates the expression can use the stack to implement the needed order of operations and use the RPN scheme internally.

9. Using the “shunting algorithm” (Djkstra, circa 1960) we can translate infix expressions into postfix.

Design of the User Interface:

1. For now, we'll keep the existing command-line interface with operations and operands specified separately (just to keep it simple.)

2. The help feature is going to be a major routine.

3. Error checking needs to be pretty specific (with reasonable error messages.)

4. Output and status messages will be equally critical at this stage.

Design of the Application:

 1. Preparatory work:

 a) Include all of the needed libraries, classes, and methods.

 b) Initialize the user workspace (data lists, etc.)

 c) Display some preliminary messages (program title, how to get help, etc.)

 2. Main Routine:

 a) While (still_wanted);

 b) Get a command

 c) Implement a case structure to parse the command line.

 d) If a valid command, dispatch to the appropriate function

 e) If not a valid command, display an error message.

 f) Wend

 g) If normal exit, return 0;

 h) If abnormal exit,

 i) save the workspace in a “salvage file.”

 j) Display some error message explaining the failure;

 k) Exit the program.

 3. Primary Subroutines:

 a) Stack Management Primatives

· Push (Adds a data element to top of stack)

· Pop (Grabs a data element from top of stack)

· Load (reads user workspace from a file)

· Save (writes user workspace to a file)

· Display (Displays all item in the stack)

· Status (Displays stack pointer and current program state.)

· Move (Kinda unsual for a stack machine, but doable.)

· Clear

 b) Arithmetic Primitives

· Add

· Subtract

· Multiply

· Divide

· Exponent

· Factorial

· Mean

· Median

· Mode

· Sum (All items in stack)

· Product (Product of items in stack, etc.)

McCabe_Assignment20.doc
3

